EVALUATION AND MANAGEMENT OF PATIENTS WITH CLEFT LIP AND PALATE

DEFINING TERMS

PRIMARY PALATE-
Structures anterior to the incisive foramen
Includes the nose, lip alveolus, and hard palate back to the incisive foramen
Clefts of the primary palate can occur on the left, right, or both sides
Complete clefts of the primary palate include all structures as mentioned above.
Lips can be described as complete (into the nostril), or incomplete (ending below the nostril)
“Simonart Band” is a small bridge of tissue joining both sides of the cleft just below the nostril.

SECONDARY PALATE-
Structures posterior to the incisive foramen
Clefts of secondary palate only occur in the midline
Complete clefts of the secondary palate travel from the incisive foramen through the uvula
Incomplete clefts of the secondary palate may start more posteriorly on the hard palate, at the junction of the hard and soft palate, or within the soft palate only submucous cleft palate involve intact mucosa, nothing of the hard palate “zona pellucida,” abnormal orientation of the soft palate musculature, and bifed uvula.

Figure 54–8. Classification of frequently seen clefts (after Veau). A. A cleft of the soft palate only. One can usually palpate a notch in the posterior hard palate and there is generally a submucosal extension into the hard palate. B. A complete palatal cleft extending anteriorly to the incisive foramen. This cleft may be narrow but often has a wide horseshoe-shaped defect. C. A unilateral palatal and pre-palatal cleft. Note that the vomer is attached to the maxilla on the noncleft side. D. Bilateral complete cleft of the palate and prepalate. The premaxilla without any restraining force from the lip can protrude markedly and is stabilized only by the vomer. (After Veau, V.: Division Palatine, Paris, Masson el Cie, 1931.)
Figure 54-4. The levator muscle is the most important muscle for velopharyngeal closure. Note that the pull is approximately 45 degrees superiorly and posteriorly. A, At rest. B, Following contraction.
PREMAXILLA-
Mobile bony segment located between bilateral clefts of the primary palate which includes the nasal spine and houses the four front teeth (incisors).
Often too far forward in unrepaired children, too retruded following completion of facial growth.

PROLABIUM-
Contracted soft tissues attracted to the premaxilla in patients with bilateral clefts.
Stretches significantly following lip adhesion or repair.

COLUMELLA-
Tissue located below nasal tip and between nostrils.
Asymmetric in unilateral clefts, deficient in bilateral clefts.

VELUM-
Soft palate

VELOPHARYNGEAL INSUFFICIENCY (VPI)-
Dysfunction of the soft palate and pharyngeal walls resulting in inappropriate airflow through the nose during speech.

RESONANCE-
A quality of speech that involves the balance of air passing through the nose and mouth. If too much air comes out of the nose they are hypernasal and may sound like the Nanny. If too little air comes out of the nose they are hyponasal and sound like they have a cold.

SECONDARY PALATAL MANAGEMENT-
Surgery done to help decrease the air coming out of the nose when speech therapy is not enough.

ARTICULATION-
The way sounds are made using the lips, teeth, and tongue. When people make sounds the wrong way they need speech therapy to learn how to make them correctly. Surgery does not correct articulation errors.
ETIOLOGY

Multifactorial and for the most part unclear.
Genetic, viral, teratogenic, nutritional, “sequence”
Occurs in the first trimester of pregnancy.

PRIMARY PALATE-
Early in the first trimester of pregnancy (4-7 weeks) the facial elements (frontonasal, two lateral maxillary, and two mandibular segments) fuse. Mesenchymal tissue migrates into these points of fusion. Lack of mesenchymal development in these areas of fusion leads to clefting.

SECONDARY PALATE-
Paired maxillary process (palatal shelves) are initially oriented in a vertical fashion alongside the developing tongue. As the mandible grows, the tongue lowers, and the shelves raise to a horizontal position. The epithelial lining breaks down, and the palate begins to anteriorly at about the 8th week of gestation. The fusion is completed by the 17th week. Tongue positioning (due to the cleft of the primary palate, small mandible, lack of neck positioning), deficiencies of the palatal shelves, or lack of epithelial breakdown may also lead to clefting of the secondary palate.
EPIDEMIOLOGY

Cleft lip or cleft lip and palate is NOT the same as an isolated cleft palate.
Some degree of clefting occurs in 1:600 to 1:1,000 live births
CL alone – 21%
CL/P – 46%
CP – 33%

CLEFT LIP AND PALATE
 Second most frequent major congenital anomaly
 Males > Females (2:1)
 Left: Right: Bilat = 6:3:1
 Positive family history twice common as with CP only (about 17-25%)
 Majority are isolated deformities

CLEFT PALATE
 Females > Males (2:1)
 Less likely to have positive family history (3-12%)
 More likely to have associated anomalies (approximately 29%)

INHERITANCE
 Normal parents + one or more children with CL+/-CP = 4% chance of additional children with cleft
 Parent with CL+/-CP = 4% chance of child with cleft
 Parent with CL+/-CP + one child with CL+/-CP=14-17% chance of additional children with cleft
 Normal parent + one child with CP = 2% chance of additional children with cleft
 The worse the cleft, the higher the chance of future children with cleft.
 The stronger the family history, the higher the chance of future children with a cleft.
 The stronger the family history, the higher the chance of future children with clefts

SYNDROMES

Over 150 syndromes involving clefts have been described
1% of newborns have multiple abnormalities or syndromes and only 40% of these are recognizable.
Syndrome vs. Sequence

PIERRE-ROBIN or ROBIN SEQUENCE
 Micro or retrognathia, glossoptosis, cleft palate (wide, U-shaped)
 May have airway complications in first 3-6 months (prone positioning, Lip-tongue adhesion, tracheostomies)
 May occur as a component of syndrome or isolated (nonsyndromic).

STICKLER SYNDROME
 Autosomal Dominant
 Often seen with Robin sequence
 Retinal detachment occurs in 20%, blindness in 15%
 Arthritis
VAN DER WOUDE SYNDROME -
 Autosomal Dominant (50% penetrance)
 Lower lip pits or mucous cysts associated with CL+/-CP
 Variable phenotypic expression

VELOCARDIOFACIAL or SHPRINTZEN SYNDROME
 Autosomal Dominant, through most are sporadic (deletion AT22q11)
 1:2000 of general population
 Anomalies include behavior, palate/speech, facies, cardiac, and vascular
 Comprises 11% of Robin cases, 8% of all isolated CPs

PEDIATRIC CONCERNS

Full history and physical examination
If associated anomalies identified, consult geneticist and specialists as indicated (ENT, ophthalmologist, cardiologist, ortho).
Helpful for parents to meet plastic surgeon as early as possible (prenatally if identified on ultrasound).
Careful monitoring of feeding, nutrition, and weight gain. (Breast feeding controversy, Haberman nipple, cross cut nipple, don’t flood, burp frequently, utilize feeding specialist)
High frequency of ear infections (PETs usually placed at time of CP repair)
Dental hygiene
Speech therapy

COUNSELING

Relieve parents guilt
Refer to Multidisciplinary Cleft Team
Ensure adequate genetic counseling if indicated
Stress that they have a normal child who happens to have cleft lip or palate
Be supportive to parents excess time, expense, and stress with multiple surgeries, appointments, orthodontics
Support groups (AboutFace 1-800-665-FACE), contacting other families dealing with clefts

SURGERY TIMELINE

Remember that every child and surgeon are a little different
There is usually no true right and wrong (more a matter of preference)
CLEFT LIP ADHESION / REPAIR

TIMING-
Some doctors like to repair lips in one stage, some in two, or case by case based on the width of the cleft.
Usually done from 6 weeks to 3 months of age
If two stages, second at about 6 months after the first surgery

SURGERY-
1-2 hours
General anesthesia
One night stay

RECOVERY-
Sutures removed in 3-7 days
Protect lip (car seat, arm splints, no macifier) 2-3 weeks

COMPLICATIONS-
Anesthesia
Infection
Dehiscence (splitting apart)
Poor cosmetic result

CLEFT PALATE REPAIR

TIMING-
6-12 months of age
Ideally before speech develops, but late enough to allow for maximal facial growth

SURGERY-
1.5-2 hours
General anesthesia
Tongue stitch possible
1-2 night stay

RECOVERY-
Stitches dissolve
Liquid or soft diet for three weeks
Protect palate 3 weeks (arm splints)
No spoons, straws, pacifiers in mouth three weeks

COMPLICATIONS-
Bleeding
Airway
Fistula
VPI
Facial growth stunting
FISTULA REPAIR

TIMING-
Based on severity of symptoms (nasal regurgitation, hypernasality)

SURGERY-
Very similar to cleft palate repair
General anesthesia
2-3 hours
1-2 night hospital stay
May involve cartilage graft of tongue flap

RECOVERY-
Protect palate three weeks
Liquids or soft foods 3 weeks

COMPLICATIONS-
Infection
Dehiscence
Poor cosmetic result

COLUMELLAR LENGTHENING/LIP REVISION/NOSE REVISION

TIMING-
Elective
Usually age 4, prior to starting school
Nasal tip may need cartilage graft from ear

SURGERY-
1 to 4 hours
General anesthesia
Inpatient or outpatient

RECOVERY-
Stitches out in 3-7 days
May have nasal packing or head wrap for ear
Protect for first few weeks

COMPLICATIONS-
Infection
Dehiscence
Poor cosmetic result
ALVEOLAR BONE GRAFT/ILLIAC CREST BONE GRAFT

TIMING-
Usually 7 to 11 years of age based on tooth root development
Follows palate expansion
Orthodontist usually determines timing

SURGERY-
May be done by oral surgeon and/or plastic surgeon
Bone is taken from the upper hip bone and placed into alveolar and maxillary cleft
This surgery completes maxillary arch, allows for adult tooth to come in, or implant
Treats nasolabial fistulae
Palate fistulae are often repaired at the same time
Surgery takes 2-4 hours
General anesthesia
1-2 night hospital stay

RECOVERY-
Liquids or soft foods 3 weeks
Hip may be sore for over a month
Follow-up includes x-rays

COMPLICATIONS-
Infection
Bleeding (hematoma)
Resorption (dissolving) of bone graft
Injury of teeth or guns
Numbness of upper thigh

SECONDARY PALATAL MANAGEMENT

TIMING-
Following adequate trial of speech therapy
Work-up includes speech evaluation, endoscopy (camera down nose) or xray study
Rule out palatal fistula
Can be done at any age

SURGERY-
Pharyngeal flap, Sphincter pharyngoplasty, Furlow Z-Plasty
2 hours
General anesthesia
Tongue stitch
1-2 night stay
RECOVERY-
- Swelling first few weeks may cause snoring, muffled voice
- Liquids or soft diet 3 weeks
- Stitches dissolve

COMPLICATIONS-
- Bleeding
- Airway
- Obstructive sleep apnea
- Overcorrection (hyponasal voice)
- Undercorrection (continued hypernasal speech)

ORTHOGNATIC SURGERY

TIMING-
- Teen years, following orthodontics

SURGERY-
- Usually performed by Oromaxillofacial surgeon
- May involve maxilla, mandible, or both
- May involve distraction (stretching the bone)
- 2-4 hours
- General Anesthesia

RECOVERY-
- May have jaws wired 2-6 weeks
- Liquids or soft foods 3 weeks
- 1-2 night hospital stay

COMPLICATIONS-
- Airway
- Infection
- Relapse of position
- Injury to teeth of gums
- Numbness

RHINOPLASTY

TIMING-
- Females 13-16 years
- Males 15-17 years
- Best to be done after orthognathic surgery
SURGERY-
 2-5 hours
 Usually general anesthesia
 “Open” rhinoplasty with cartilage grafts
 Can be done as outpatient
 Improves appearance and/or breathing

RECOVERY-
 Nasal packing and splint first week
 Bruising and swelling 2-3 weeks
 Final swelling may take 1 year to go away
 Protect from trauma 6 weeks

COMPLICATIONS
 Bleeding
 Infection
 Persistent deformity
 Persistent nasal obstruction
 Poor cosmetic result